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Abstract—Stochastic Diffusion Search (SDS), first incepted in
1989, belongs to the extended family of Swarm Intelligence
algorithms. In contrast to many nature-inspired algorithms, SDS
has a strong mathematical framework describing its behaviour
and convergence. In addition to concisely exploring the algorithm
in the context of natural swarm intelligence systems, this paper
reviews the developments of this algorithm, which are shown to
perform well in a variety of application domains.

I. INTRODUCTION

Noisy environments and incomplete data have often been at
the heart of search and optimisation-related problems; some-
thing that conventional heuristics (e.g. Simulated Annealing
[1], Tabu Search [2], etc.) often have difficulty dealing with.
Additionaly, the easy-to-understand architecture of these algo-
rithms and complex emergent behaviour has attracted many
researchers.

This review paper surveys SDS, a multi-agent global search
and optimisation algorithm, which is based on simple interac-
tion of agents. After considering SDS in the broader context of
natural swarms, a high-level description of SDS is presented
in the form of a social metaphor followed by a simple search
example demonstrating the procedures through which SDS
conducts the search. The architecture and development of SDS
are then discussed in greater detail. In addition to analysing the
behaviour of SDS and the possibility of embedding different
interaction strategies, the novel way it deals with computa-
tional costly objective funtions is investigated. Issues related
to applications of SDS are then presented. We conclude this
review by discussing potential research opportunities.

II. SWARM INTELLIGENCE

In recent years, studies of the behavour of social insects
have suggested several new metaheuristics for use in collective
intelligence. This has given rise to a concomitant increasing
interest in distributed computation through the interaction of
simple agents in nature-inspired algorithms (e.g. evolutionary
algorithms [3], genetic algorithms [4], [5], ant algorithms [6],
[7], particle swarm optimsation [8] and etc.).

Swarm intelligence which investigates collective intelli-
gence, aims at modelling intelligence by looking at individuals
in a social context and monitoring their interaction with one
another as well as their interaction with the environment [9].
Natural examples of swarm intelligence that exhibit these
forms of interaction are fish schooling, birds flocking, ant

colonies in nesting and foraging, bacterial growth, animal
herding, brood sorting and etc.

The story of the blind men and the elephant also suggests
how social interaction can possibly lead to human intelligence.
This famous tale set in verse by John Godfrey Saxe [10]
in the 19th century, characterises six blind men approaching
an elephant. They ended up having six different ideas about
the elephant, as each person experienced one aspect of the
elephant’s body: wall (elephant’s side), spear (tusk), snake
(trunk), tree (knee), fan (ear) and rope (tail). The moral of
the story is to show how people build their beliefs based on
incomplete beliefs derived from incomplete knowledge about
the world [11]. If the blind men had been communicating
about what they were experiencing, they would have possibly
come up with the conclusion that they were exploring the
heterogeneous qualities that make up an elephant.

Although some writers (e.g. [12], [13]) blur the difference
between adaptation and intelligence by claiming that intelli-
gence is actually the ability to adapt, other writers of the field
of swarm intelligence (e.g. [11]) emphasise that an individual
is not an isolated information processing entity. Stochastic
Diffusion Search, which functions by interaction between
agents, adopts the second view and shares some characteristics
and behaviours of swarms intelligence algorithms which can
be best understood by observing the behaviours of social
insects such as ants and bees in locating food sources and
nest site location. In the next two parts of this section (I[-A
and II-B), SDS is investigated in this context.

A. Communication in Social Insects

Communication — social interaction or information ex-
change — observed in social insects is important in all swarm
intelligence algorithms, including SDS. Although as stated in
[11], in real social interations, not just the syntactical informa-
tion is exchanged between the individuals but also semantic
rules and beliefs about how to process this information; in
swarm intelligence algorithms, only the syntactical exhange
of information is considered.

In the study of the interaction of social insects, two im-
portant elements are the individuals and the environment,
which will result in two integration schemes: the first one
is the way in which individuals self-interact and the second
one is the interaction of the individuals with the environment
[14]. Self-interation between individuals is carried out through
recruitment and it has been demonstrated that there are various



recruitment strategies in ants [15] and honey bees [16], [17].
These recruitment strategies are used to attract other members
of the society to gather around one or more desired areas,
either for foraging purposes or for moving to a new nest site.

There are different forms of recruitment in social insects;
it may take the form of local or global; one-to-one or one-to-
many; and stochastic or deterministic mode. The nature of
information exchange also varies in different environments
and with different types of social insects. Sometimes the
information exchange is more complex where, for example
it might carry data about the direction, suitability of the target
and the distance; or sometimes the information sharing is sim-
ply a stimulation forcing a certain triggered action. What all
these recruitment and information exchange strategies have in
common is distributing useful information in their community
[18]. In the next part, different forms of information exchange
in some social insects are discussed in further detail and their
relation to SDS recruitment strategies are presented.

B. Methods of Communication

Chemical communication through pheromones forms the
primary method of recruitment in ants. However in one species
of ants, Leptothorax acervorum, where a ’tandem calling’
mechanism (one-to-one communication) is used, the forager
ant that finds the food location, recruits a single ant upon
its return to the nest, and therefore the location of the food
is physically publicised [19]. In group recruitment, an ant
convenes a larger number of ants, leading them to the food
location. Laying the pheromone trial from the food source to
the nest is of more advanced nature, in which the leading
ant is not physically in contact with other ants. However, the
most advanced form of ant recruitment is mass recruitment
[20] in which the worker ants follow the pheromone trail, but
individual ants add an amount of pheromones alongside their
journey towards the food location. Therefore, the amount of
pheromone plays an important role in the outflow attraction
of the ants.

In another primitive ant species where nest replacement is
studied [21], an ant with a better nest location, summons an
ant with a poorer choice. In this algorithm, API, ants are all
called to the best nest found so far and subsequently they start
exploring the area again for a better nest location. Different
recruitment and communication algorithms induce different
performances. Ants communicating through group recruitment
are faster than tandem calling ants, and similarly, ants utilising
mass recruitment are more efficient in their performances
than the former recruitment strategies [20]. Ant algorithms
were successfully applied to hard optimisation and search
problems such as traveling salesman problem and the quadratic
assignment problem [22].

However, as mentioned in [23], the success of the ants in
reaching the food they have been recruited to obtain, varies
from one species to another. In another form of communi-
cation, indirect or stigmergetic communication, the exchange
of information is based on modifying the physical properties
of the environment and its success lies in spatial and tempo-
ral attributes of mass recruitment and the positive feedback

mechanism it employs. In this mode, which is based on using
pheromone, short routes are loaded with more pheromone
(because of the short time it takes the ants to travel [24]).

Although the recruitment behaviour of real ants recruitment
is more complex than the behaviour in SDS, they are both
population-based and find their optima via agents communi-
cating with each other.

An ant-like task allocation has been investigated in
[25] where robots were used to simulate different non-
communication and communication strategies, concluding
that ant-inspired techniques of decentralised control, namely
tandom-calling recruitment mechanism [19] shows better re-
sults than single robots doing the same task. This technique
of information exchange is an instance of a broader type of
recruitment strategy utilised in stochastic diffusion search [26],
which will be discussed in more detail, later in this paper.

In honey bees the group recruitment is performed by means
of waggle dances, in which the direction of the dance shows
the location of the food source and the speed of the dance
represents the distance to the target area. Each bee chooses
one of the dancing bees as a guide to the food source.

In SDS, direct one-to-one communication (which is similar
to tandem calling recruitment) is utilised. The effect of dif-
ferent recruitment strategies are discussed later (see Section
V).

C. Search and Optimisation

In the swarm intelligence literature, search and optimisation
are often used interchangeably. Nevertheless, search has been
catogorised in three broad types in [27]:

o In the first definition, search refers to finding a (target)
model in a search space, and the goal of the algorithm
is to find a match, or the closest match to the target in
the search space. This is defined as data search and is
considered as a classical meaning of search in computer
science [28].

« In the second type, the goal is finding a path (path search)
and the list of the steps leading to a certain solution is
what the search algorithm tries to achieve. In this type of
search, paths do not exist explicitly but are rather created
during the course of the search.

« In the third definition, solution search, the goal is to find
a solution among a large problem space of candidate
solutions. Similar to the path search where paths do not
exist explicitly, the search space consists of candidate
solutions which are not stored explicitly but rather created
and evaluated during the search process. However, on the
contrary to the path search, the steps taken to find the
solution are not the goal of the algorithm.

In optimisation, which is similar to the third search definition,
the model of the first definition is replaced with an objective or
fitness function which is used to evaluate possible solutions. In
both search and optimisation, the positions of the optima are
not known in advance (even though the optima itself might be
known a-priori). The task of the fitness function is to measure
the proximity of the candidate solutions to the optima based
on the criteria provided by each optimisation problem. The



algorithm compares the output of the function with the output
of the previously located candidate solutions and, for instance,
in case of a minimisation problem, the smaller the output
the better the solution. Data search can be seen as a caste
of optimisation if the objective function tests the equality of
the candidate solution with the model.

III. STOCHASTIC DIFFUSION SEARCH

Stochastic Diffusion Search (SDS) [29] introduced a new
probabilistic approach for solving best-fit pattern recognition
and matching problems. SDS, as a multi-agent population-
based global search and optimisation algorithm, is a distributed
mode of computation utilising interaction between simple
agents [30].

Unlike many natured inspired search algorithms, SDS has
a strong mathematical framework, which describes the be-
haviour of the algorithm by investigating its resource alloca-
tion [31], convergence to global optimum [32], robustness and
minimal convergence criteria [33] and linear time complexity
[34].

In order to introduce SDS, a social metaphor, the Mining
Game, is introduced.

A. The Mining Game

This metaphor provides a simple high-level description of
the behaviour of agents in SDS, where mountain range is
divided into hills and each hill is divided into regions:

A group of miners learn that there is gold to be found
on the hills of a mountain range but have no infor-
mation regarding its distribution. To maximize their
collective wealth, the maximum number of miners
should dig at the hill which has the richest seams
of gold (this information is not available a-priori).
In order to solve this problem, the miners decide to
employ a simple Stochastic Diffusion Search.

o At the start of the mining process each miner
is randomly allocated a hill to mine (his hill
hypothesis, h).

« Every day each miner is allocated a randomly
selected region, on the hill to mine.

At the end of each day, the probability that a miner
is happy is proportional to the amount of gold he
has found. Every evening, the miners congregate and
each miner who is not happy selects another miner
at random for communication. If the chosen miner
is happy, he shares the location of his hill and thus
both now maintain it as their hypothesis, #; if not,
the unhappy miner selects a new hill hypothesis to
mine at random.

As this process is isomorphic to SDS, miners will naturally
self-organise to congregate over hill(s) of the mountain with
high concentration of gold.

In the context of SDS, agents take the role of miners; active
agents being "happy miners’, inactive agents being 'unhappy
miners and the agent’s hypothesis being the miner’s ’hill-
hypothesis’.

Algorithm 1 The Mining Game

Initialisation phase

Allocate each miner (agent) to a random

hill (hypothesis) to pick a region
randomly
While (all miners congregate over the highest

concentration of gold)
Test phase

Each miner evaluates the amount of gold

they have mined (hypotheses evaluation)
Miners are classified into happy (active)

and unhappy (inactive) groups
Diffusion phase
Unhappy miners consider a new hill by
either communicating with another miner
or,if the selected miner is also
unhappy, there will be no information
flow between the miners; instead the
selecting miner must consider another
hill

(new hypothesis) at random

End

B. Refinements in the Metaphor

There are some refinements in the miners analogy, which
will elaborate more on the correletion between the metaphor
and different implementations of the algorithm.

Whether an agent is active or not can be measured proba-
blistically or gold may be considered as resource of discrete
units. In both cases all the agents are either active or inactive
at the end of each iteration'; this is isomorphic to standard
SDS. The Mining Game can be further refined through either
of the following two assumptions at each location:

1) Finite resources: the amount of gold is reduced each
time a miner mines the area

2) Infinite resources: a conceptual situation with potentially
infinite amount of gold

In the case of having finite resources, the analogy can be
related to a real world experiment of robots looking for food to
return to a notional nest site [25]. Hence the amount of food (or
gold, in the mining analogy) is reduced after each discovery. In
that experiement, an ant-like algorithm is used to avoid robots
interfering with one another; considering individual variation
in performing the task; and also recruiting other robots when
identifying a rich area is investigated. In this case, the goal is
identifying the location of the resources throughout the search
space. This type of search is similar to conducting a search
in a dynamically, agent-initiated changing environment where
agents change their congregation from one area to another.

'Whether an agent is active or not is defined using the following two
methods:

o probabilistically: a function f takes a probability p as input and returns
either true or false, f (p) => Active|Inactive

o discretely: if there is gold, the agent will be active, otherwise it will be
inactive.



The second assumption has similarities with discrete func-
tion optimisation where values at certain points are evaluated.
However further re-evaluation of the same points does not
change their values and they remain constant.

IV. SDS ARCHITECTURE

The SDS algorithm commences a search or optimisation
by initialising its population (e.g. miners, in the mining
game metaphor). In any SDS search, each agent maintains
a hypothesis, h, defining a possible problem solution. In
the mining game analogy, agent hypothesis identifies a hill.
After initialisation two phases are followed (see Algorithm
1 for these phases in the mining game; for high-level SDS
description see Algorithm 2):

o Test Phase (e.g. testing gold availability)
« Diffusion Phase (e.g. congregation and exchanging of
information)

In the test phase, SDS checks whether the agent hypothesis is
successful or not by performing a partial hypothesis evaluation
and returning a domain independent boolean value. Later in
the iteration, contingent on the strategy employed, successful
hypotheses diffuse across the population and in this way
information on potentially good solutions spreads throughout
the entire population of agents.

In the Test phase, each agent performs partial function
evaluation, pF'E, which is some function of the agent’s
hypothesis; pFFE = f(h). In the mining game the partial
function evaluation entails mining a random selected region
on the hill, which is defined by the agent’s hypothesis (instead
of mining all regions on that hill).

In the Diffusion phase, each agent recruits another agent
for interaction and potential communication of hypothesis.
In the mining game metaphor, diffusion is performed by
communicating a hill hypothesis.

Algorithm 2 SDS Algorithm

Initialising agents ()
While (
Testing hypotheses ()

stopping condition is not met )

Diffusion hypotheses ()
End

A. A Search Example

In order to demonstrate the process through which SDS
functions, an example is presented which shows how to find
a set of letters within a larger string of letters. The goal is to
find a 3-letter model (Table I) in a 16-letter search space (Table
I). In this example, there are four agents. For simplicity of
exposition, a perfect match of the model exists in the Search
Space (SS).

Table I
MODEL

Index: | O
Model: | S | I | B

—_
(3]

Table 11
SEARCH SPACE

Index: | O 1 2 3 4 5 6 7
Search Space: | X | Z | A M| Z S 1
Index: | 8 | 9 [ 10 | 11 | 12 | 13 | 14 | 15
Search Space: | B | V | G o B E | H

In this example, a hypothesis, which is a potential problem
solution, identifies three adjecent letters in the search space
(e.g. hypothesis ’1’ refers to Z-A-V, hypothesis *10 refers to
G-O-L and etc).

In the first step, each agent initially randomly picks a
hypothesis from the search space (see Table III). Assume that:

o the first agent points to the 12" entry of the search space

and in order to partially evaluate this entry, it randomly

picks one of the letters (e.g. the first one, L):

« the second agent points to the 9" entry and randomly

picks the second letter (G):

o the third agent refers to the 2" entry in the search space

and randomly picks the first letter (A):

« the fourth agent goes the 3"¢ entry and randomly picks

the third letter (Z):

Table III
INITIALISATION AND ITERATION 1

Agent No: 1 2 3 4
Hypothesis position: 12 9 2 3
L-B-E | V-G-O | A-V-M | V-M-Z
Letter picked: 15t ond 15t 3rd
[ Staws: [ x [ x [ x [ x|

The letters picked are compared to the corresponding letters
in the model, which is S-I-B (see Table I).
In this case:

o The 1%¢ letter from the first agent (L) is compared against
the 1%¢ letter from the model (S) and because they are not
the same, the agent is set inactive.

o For the 2" agent, the second letter (G) is compared with
the second letter from the model (I) and again because
they are not the same, the agent is set inactive.

o For the third and fourth agents, letters A’ and °Z’ are
compared against ’S’ and "B’ from the model. Since none
of the letters correspond to the letters in the model, the
status of the agents are set inactive.

In the next step, as in the mining game, each inactive agent
chooses another agent and adopts the same hypothesis if the
selected agent is active. If the selected agent is inactive, the
selecting agent generates a random hypothesis.

Assume that the first agent chooses the second one; since
the second agent is inactive, the first agent must choose a new
random hypothesis from the search space (e.g. 6). See Figure
1 for the communication between agents.

Figure 1. Agents Communication 1

lag1|+==[ag2|*—[ag3]—[ag4|




The process is repeated for the other three agents. As the
agents are inactive, they all choose new random hypotheses
(see Table IV).

Table IV
ITERATION 2
Agent No: 1 2 3 4
Hypothesis position: 6 10 0 5
S-I-B | G-O-L | X-Z-A | Z-S-1
Letter picked: || 279 3rd 15° 15%
[ Staws: [/ [ x [ x [ x |

In Table IV, the second, third and fourth agents do not
refer to their corresponding letter in the model, therefore they
become inactive. The first agent, with hypothesis '6°, chooses
the 277 letter (I) and compares it with the 2"? letter of the
model (I). Since the letters are the same, the agent becomes
active.

At this stage, consider the following communication be-
tween the agents: (see Figure 2)

« the fourth agent chooses the second one
« the third agent chooses the second one
« the second agent chooses the first one

Figure 2. Agents Communication 2

lag1]+—[ag2|*|ag3]

lag4]

In this case, the third and fourth agents, which chose
an inactive agent (the second agent), have to choose other
random hypotheses each from the search space (e.g. agent
three chooses hypothesis 1’ which points to Z-A-V and agent
four chooses hypothesis 4 which points to M-Z-S), but the
second agent adopts the hypothesis of the first agent, which
is active. As shown in Table V:

o The first agent, with hypothesis *6’, chooses the 37¢ letter
(B) and compares it with the 374 letter of the model (B).
Since the letters are the same, the agent remains active.

o The second agent, with hypothesis *6’, chooses the 1%
letter (S) and compares it with the 1°? letter of the model
(S). Since the letters are the same, the agent stays active.

o the third and fourth agents do not refer to their cor-
responding letter in the model, therefore they are set

inactive.
Table V
ITERATION 3
Agent No: 1 2 3 4
Hypothesis position: 6 6 1 4
S-I-B | S-I-B | Z-A-V | M-Z-S
Letter picked: || 377 15% ond 37d
[ Saws: [/ [ vV [ x [ x |

Because the third and fourth agents are inactive, they try to
contact other agents randomly. For instance (see Figure 3):

« agent three chooses agent two
« agent four chooses agent one

Figure 3. Agents Communication 3

[agl] [ag2]*[ag3] Ia?4l
t

Since agent three chose an active agent, it adopts its
hypothesis (6). As for agent four, because it chose agent one,
which is active too, it adopts its hypothesis (6). Table VI
shows:

o The first agent, with hypothesis ’6’, chooses the 1% letter
(S) and compares it with the 1°¢ letter of the model (S).
Since the letters are the same, the agent remains active.

o« The second agent, with hypothesis 6’, chooses the 2%
letter (I) and compares it with the 274 Jetter of the model
(D). Since the letters are the same, the agent stays active.

o The third agent, with hypothesis ’6’, chooses the 37
letter (B) and compares it with the 37 letter of the model
(B). Since the letters are the same, the agent becomes
active.

o The fourth agent, with hypothesis ’6’, chooses the 15!
letter (S) and compares it with the 15¢ letter of the model
(S). Since the letters are the same, the agent is set active.

Table VI
ITERATION 4

Agent No: 1 2 3 4
Hypothesis position: 6 6 6 6
S-I-B | S-I-B | S-I-B | S-I-B
Letter picked: 15t ond 3rd 15t

[ Saws: [V | V[ vV [ V]

At this stage, the entire agent populations are active pointing
to the location of the model inside the search space.

B. Initialisation and Termination

Although normally agents are uniformly distributed
throughout the search space, if the search space is of a specific
type, or knowledge exists about it a priori, it is possible to use
a more intelligent (than uniform random distribution) startup
by biasing the initialisation of the agents.

If there is a pre-defined pattern to find in the search space,
the goal will be locating the best match or, if it does not exist,
its best instantiation in the search space [32]. Similarly, in a
situation which lacks a pre-defined pattern, the goal will be
finding the best pattern in accord with the objective function.

In both cases, it is necessary to have a termination strategy.
In one method?, SDS terminates the process when a statistical
equilibrium state is reached, which means that the threshold
of the number of active agents is exceeded and the population
maintained the same state for a specified number of iterations.
In [35], four broad types of halting criteria are introduced:

1) No stopping criterion, where the user interrupts the
course of action of the search or optimisation and is usu-
ally preferred when dealing with dynamically changing
problem spaces or when there is no predefined pattern
to look for

2Ibid



2) Time-based criterion, in which passing a pre-set duration

of time is the termination point of the algorithm

3) Activity-based criterion, which is a problem-dependent

halting criterion, and it is the most prevalent form in
the SDS algorithm. The termination of the process is
decided upon through monitoring the overall activity of
the agents (e.g. reaching a certain user defined activity
level, reaching a stable population state after a sudden
increase in their activities)

4) Cluster-based criterion that keeps tracks of the formation

of stable clusters.
Introducing stopping criteria adds extra computations to what
would be a distributed algorithm otherwise. As an alternative
to the full-model cluster-based criteria, just a small proportion
of the population can be considered to check whether it points
to the same hypothesis [35]. Increasing the size of the already
monitored sample might be considered afterwards.

Additionally, in order to reduce the computational complex-

ity of the search, it is also possible to run the termination
procedure after every n iterations.

The two most common termination strategies in SDS (in-

troduced in [32]) are the following:

o Weak halting criterion is the ratio of the active agents to
the total number of agents. In this criterion, cluster sizes
are not the main concern.

« Strong halting criterion investigates the number of active
agents that forms the largest cluster of agents all adopting
the same hypothesis.

Therefore, the choice of the halting mechanism is based on
whether to favour the active agents in the whole of the agent
populations (weak halting mechanism), which is similar to the
activity-based criterion, or to consider the largest cluster of
active agents (strong halting mechanism), which is similar to
the cluster-based criterion.

C. Partial Function Evaluation

One of the concerns associated with many optimisation
algorithms (e.g. Genetic Algorithm [5], Particle Swarm Opti-
misation [8] and etc.) is the repetitive evaluation of a computa-
tionally expensive fitness functions. In some applications, such
as tracking a rapidly moving object, the repetitive function
evaluation significantly increases the computational cost of the
algorithm. Therefore, in addition to reducing the number of
function evaluations, other measures should be taken in order
to reduce the computations carried out during the evaluation
of each possible solution as part of the optimisation or search
processes.

The commonly used benchmarks for evaluating the perfor-
mance of swarm intelligence algorithms are typically small
in terms of their objective functions computational costs [36],
[37], which is often not the case in real-world applications.
Examples of costly evaluation functions are seismic data
interpretation [37], selection of sites for the transmission
infrastructure of wireless communication networks and radio
wave propagation calculations of one site [38] and etc.

Costly functions have been investigated under different
conditions [39] and the following two broad approaches have
been proposed to reduce the cost of function evaluations:

o The first is to estimate the fitness by taking into account
the fitness of the neighbouring elements, the former
generations or the fitness of the same element through
statistical techniques introduced in [40], [41].

o In the second approach, the costly fitness function is
substituted with a cheaper, approximate fitness function.

When agents are about to converge, the original fitness func-
tion can be used for evaluation to check the validity of the
convergence [39].

Many fitness functions are decomposable to components
that can be evaluated separately. In partial evaluation of the
fitness function in SDS, the evaluation of one or more of the
components may provide partial information and means for
guiding the optimisation.

The partial function evaluation of SDS allows the algorithm
to absorb certain types of noise in the objective function
without affecting the convergence time or the size and stability
of the clusters.

Additionally, noise, which does not alter the averaged proba-
bilities of the test score (probability of producing active agents
during the test phase, averaged over all component functions)
but increases the variance in the evaluation of component
functions, has no effect on the resource allocation process of
SDS [18]. However, if the value of test score changes as a
result of noise presence, the resource allocation process may
be influenced either:

o positively if the value of the test score increases
« or negatively if the value of the test score decreases

Dynamic Environments: The application of partial function
evaluation is of more significance when the problem space is
dynamically changing and the evaluation process is of more
repetitive nature. Repeated (re)evalutions of fitness functions
in many swarm intelligence algorithms necessiate having less
costly fitness functions.

Diffusion or the selection mechanism tends to reduce the
diversity in the population or the population homogeneity [18],
which in turn leads to an inadequate subsequent reactions in
a dynamically changing fitness function.

SDS aims at proposing a new solution (see Section IV-E)
to the problem of population homogeneity by utilising an
alternative method to balance the trade off between wide
exploration of all possible solution in the problem space and
the detailed exploitation of any possible smaller region which
might be a candidate for holding the sought object.

D. Convergence

Convergence time is defined as the number of iterations
needed before a stable population of active agents is formed.

The SDS algorithm allocates its resources by defining
convergence as locating the best match in the search space.

An important factor in convergence is the ratio of the
number of agents to the size of the solution space. In [42], it
is proved that in a noiseless environment convergence always
happens.

Additionally, in [32] it is proved that all agents become
active when searching for a solution in a noiseless environment
where a perfect match exists.



As mentioned before, the probability of an agent being
active averaged over all component functions is the test score,
which in turn determines the behaviour of SDS, and it is
proved that the population size and the test score determine
the average cluster size as well as convergence times.

The approximately linear time complexity of SDS is anal-
ysed in [32] and two extereme cases in the convergence time
have been considered there:

« First, when, in the initial stages, some of the agents point
to the correct position in the search space, which results
in a shorter convergence time

o In the second case, there is no agent pointing to the
correct position for some time after the initialisation,
which may lead to a longer process before the first agent
locates a potentially correct location.

It has also been shown that the accuracy and convergence time
in SDS is proportionately robust to the amount of noise in the
search space.

Convergence to a global optimal solution in SDS is dis-
cussed in [34].

E. Resource Allocation and Stability

In addition to convergence time, steady-state resource al-
location is one of the important factors in the performance
criteria of SDS [43]. In order to measure the robustness of
the algorithm, in case of the presence of noise and imperfect
matches, resource allocation is taken into account, which
is determined as the average number of active states when
the search shows steady-state behaviour. Although, resource
allocation in standard SDS is dynamic and self-regulatory,
there are certain issues to be investigated.

Local Exploitation and Global Exploration : In standard
SDS, there is no explicit mechanism to shift the balance from
local exploitation (detailed exploitation) to global exploration
(wide exploration) of candidate solutions.

As observed in [44], a metaheuristic tries to exploit self-
similarity and regularities of the fitness function, which indi-
cates that neighbouring solutions in the problem space have
alike properties. Adding this mechanism to SDS may be
helpful; one way of embedding this into the algorithm is to add
a small random offset to the hypotheses before copying them
to other agents during the diffusion phase, which is similar
to mutation in evolutionary algorithms [18], [35]. The effect
of this minor change in the hypotheses is to investigate the
nearby solutions, which generally serves as a hill-climbing
mechanism improving the overall performance of the SDS and
results in improved convergence time in solution spaces with
self-similarity. Nevertheless, it also accelerates the finding of
more optimal solutions in the vicinity of already found ones.

In dynamically changing environments, it is important to ex-
plore the solution space even after finding a suitable candidate
solution, as once a good solution is detected, a large propertion
of agents are attracted to it, thus limiting further exploration
of the solution space. Therefore, the Context Sensitive and
Context Free mechanisms (described in Section V-A) are
proposed to shift the balance of the search back to exploration.

A full account of Markov chain based analysis of the
stochastic nature of standard SDS for resource allocation and
the steady state probability distribution of the whole swarm is
extensively discussed in [31]. More information about search
behaviour and resource allocation can also be found in [45],
[46].

In heuristic multi-agent systems, the possibility of agents
losing the best solution results in destabilising or even non-
convergence of the algorithm. Conversely, it is shown that the
solution found by SDS are exceptionally stable [47].

V. VARIATIONS IN SDS

In SDS, similar to other optimisation algorithms, the goal is
finding the best solution based on the criteria specified in the
objective function. The collection of all candidate solutions
(hypotheses) forms the search space and each point in the
search space is represented by an objective value, from which
the objective function is formed [18]. In the minimisation
mode, for example, the lower the objective value is the better
the result is.

Although there might not be a direct way of finding the best
objective function for a problem, many optimisation problems
can be transformed into the minimisation form [35].

One of the issues related to SDS is the mechanism behind
allocating resources to ensure that while potential areas of the
problem space are exploited, exploration is not ignored. For
this purpose, different recruitments methods, where one agent
recruits another one, are investaged:

A. Recruitment Strategies

Three recruitment strategies are proposed in [48]: active,
passive and dual. These strategies are used in the Diffusion
Phase of SDS. Each agent can be in either one of the following
states: It is active if the agent is successful in the Test Phase;
an agent is inactive if it is not successful; and it is engaged
if it is invloved in a communication with another agent.

The standard SDS algorithm [29] uses the passive recruit-
ment mode, which will be described next followed by other
recruitment modes.

Passive Recruitment Mode: In the passive recruitment
mode, if the agent is not active, another agent is randomly
selected and if the randomly selected agent is active, the
hypothesis of the active agent is communicated (or diffused)
to the inactive one. Otherwise a new random hypothesis is
generated for the inactive agent and there will be no flow of
information (see Algorithm 3).

Active Recruitment Mode: In the active recruitment mode,
active agents are in charge of communication with other
agents. An active agent randomly selects another agent. If
the randomly selected agent is neither active nor engaged in
communication with another active agent, then the hypothesis
of the active agent is communicated to the inactive one and
the agent is flagged as engaged. The same process is repeated
for the rest of the active agents. However if an agent is neither
active nor engaged, a new random hypothesis is generated for
it (see Algorithm 4).



Algorithm 3 Passive Recruitment Mode

Algorithm 5 Dual Recruitment Mode

for ag = 1 to No_of_agents
false )
r_ag = pick a random
if (
ag.setHypothesis (

if ( ag.activity() ==
agent ()
r_ag.activity() == true )
r_ag.getHypothesis () )
else
ag.setHypothesis ( randomHypothsis () )

end

Algorithm 4 Active Recruitment Mode

for ag = 1 to No_of_agents

if ( ag.activity() == true )

r_ag = pick a random agent ()
if ( false and
false )

setHypothesis (ag.getHypothesis ())

r_ag.activity () ==
r_ag.getEngaged() ==
r_ag.
true )

r_ag.setEngaged (

end
for ag = 1 to No_of_agents

if ( ag.activity() == false and

ag.getEngaged () == false )
ag.setHypothesis ( randomHypothesis () )

end

Dual Recruitment Mode: In dual recruitment mode, both
active and inactive agents randomly select other agents. When
an agent is active, another agent is randomly selected. If the
randomly selected agent is neither active nor engaged, then the
hypothesis of the active agent is shared with the inactive one
and the inactive agent is flagged as engaged. Also, if there is
an agent which is neither active nor engaged, it selects another
agent randomly. If the newly selected agent is active, there will
be a flow of information from the active agent to the inactive
one and the inactive agent is flagged as engaged. Nevertheless,
if there remains an agent that is neither active nor engaged, a
new random hypothesis is chosen for it.

Context Sensitive Mechanism: Comparing the above-
mentioned recruitment modes, it is theoretically determined
in [48] that robustness and greediness decrease in the active
recruitment mode. Conversely, these two properties are in-
creased in dual recruitment strategy. Although, the greediness
of dual recruitment mode results in decreasing the robustness
of the algorithm, the use of Context Sensitive Mechanism
limits this decrease [48], [31]. In other words, the use of
context sensitive mechanism biases the search towards global
exploration. In the context sensitive mechanism if an active
agent randomly chooses another active agent that maintains the
same hypothesis, the selecting agent is set inactive and adopts
a random hypothesis. This mechanism frees up some of the
resources in order to have a wider exploration throughout the
search space as well preventing cluster size from overgrowing,
while ensuring the formation of large clusters in case there
exists a perfect match or good sub-optimal solutions (see

for ag = 1 to No_of_agents

if ( ag.activity() == true )

r_ag = pick a random agent ()

false and
false )

r_ag.setHypothesis (ag.getHypothesis())

if ( r_ag.activity() ==
r_ag.getEngaged() ==

r_ag.setEngaged( true )

else
r_ag = pick a random agent ()
if ( r_ag.activity() == true and
ag.getEngaged() == false )

ag.setHypothesis (r_ag.getHypothesis())
ag.setEngaged( true )
end
for ag = 1 to No_of_agents
false and
false )
randomHypothesis () )

if ( ag.activity() ==
ag.getEngaged () ==
ag.setHypothesis (

end

Algorithm 6).

Algorithm 6 Context Sensitive Mechanism

if ( ag.activity() == true )
r_ag =

if |

pick a random agent ()
r_ag.activity () == true and
ag.getHypothsis ()
false )

randomHypothsis () )

== r_ag.getHypothsis () )
ag.setActivity (
ag.setHypotheis (

Context Free Mechanism: In Context Free Mechanism,
which is another recruitment mechanism, the performance is
similar to context sensitive mechanism, where each active
agent randomly chooses another agent. However, if the se-
lected agent is active (irrespective of having the same hypoth-
esis or not), the selecting agent becomes inactive and picks a
new random hypothesis. By the same token, this mechanism
ensures that even if one or more good solutions exist, about
half of the agents explore the problem space and investigate
other possible solutions (see Algorithm 7).

Algorithm 7 Context Free Mechanism

if ( ag.activity() == true )

r_ag = pick a random agent ()
if ( r_ag.activity() == true )
ag.setActivity( false )

ag.setHypotheis ( randomHypothsis () )

B. Synchronous and Asynchronous Update

Although, in the original SDS [29], synchronous mode is
used, the diffusion of successful hypotheses can be accom-



plished synchronously or asynchronously.

In synchronous diffusion mode, the updates of all hypothe-
ses occur simultaneously (all agents progress through the cycle
of test-diffusion at the same time).

There are two methods for asynchronous mode; in the first
method, the hypothesis of each agent is updated individually
(agents, in turn, go through a test-diffusion cycle). In the
second method, there is no explicit synchronisation between
agents, which is the case in a true parallel implementation.

As mentioned in [35], in many variants, the behaviour of
a asynchronous process is approximately the same as the
synchronous one.

C. Composite Hypotheses

In standard SDS all hypotheses are homogeneous and thus
have the same type. In this section, new variants of SDS are
introduced where there are two different types of hypotheses
working together. These SDS types are applied to solve
parameter estimation problems, which is a more complicated
search problem compared to pattern matching. In parameter
estimation, outlier data (or random noise) is embeded in the
data (or inlier data); and the goal is to find parameter values
that best describe the inlier data [49]. Data Driven SDS [50]
and coupled SDS [49], which have composite hypotheses, are
both used to solve parameter estimation problems. An example
of parameter estimation problem is locating a spoken word in
an audio file which has some noise. In estimation problem,
similar to other search problems, a cost function or objective
funciton is required to measure how close the algorithm is to
the inlier data or the model in the search space.

In parameter estimation, the objective function is optimised
with respect to the estimated model parameters; that is why it
is considered an optimisation problem [50].

Data Driven SDS: Data Driven SDS (DDSDS) is shown to
outperform [50] Maximum Likelihood Estimator Sample Con-
census (MLSESAC) which is a variant of RANdom SAmple
Consensus (RANSAC), one of the most popular and robust
estimators based on stochastic principles [51].

DDSDS contains a composite hypothesis: a manifold hy-
pothesis, which maintains the minimum necessary dataset
for describing a hypothesis; and a datum hypothesis, which
represent the smallest building block of the hypothesis. If
estimating a line is the problem, then the manifold hypothesis
would consists of two points, which are sufficient to represent
a line, and the datum hypothesis would be a single point that
is randomly selected from the manifold hypothesis rather than
the whole of the search space.

In the test phase, random datums are selected just from
datum hypotheses that are associated with the agents. The
probability of selecting a datum, which has no link with any
agents is zero. This will dynamically constrain the selection to
data generated by the inlier distribution [50]. Next, the distance
of the agent’s manifold hypothesis from the randomly selected
datum is evaluated to see if the distance stays within the pre-
set inlier threshold value. If this is the case, the agent’s state
becomes active.

In the diffusion phase, active agents diffuses its manifold
and datum hypotheses to the inactive agent. When an inactive

agent is not involved in any information exchange, similar to
the initialisation phase, it chooses two random data from the
entire search space for the manifold hypothesis and the datum
hypothesis is selected from one of the two elements of the
manifold hypothesis.

Coupled SDS: In Coupled SDS (CSDS) two independent
populations of agents are formed each maintaining different
type of hypothesis, namely the manifold hypotheses and datum
hypotheses. On the contrary to DDSDS, datum hypotheses
are selected randomly from the entire search space. The size
of these two populations are not necessarily the same. They
are randomly and independently initiated with data from the
entire search space. In the test phase, the manifold hypothesis
of one agent is compared with the datum hypothesis of
another one. Based on the distance threshold, if the datum
matches the manifold, both of the agents become active. This
evaluation is called composite hypothesis evaluation, which is
more complicated than the synchronous evaluation in standard
SDS, where there is just one population of agents. Therefore,
in addition to asynchronous test, two other synchronisation
modes were proposed:

e Master/Slave Synchronisation, where one of the pop-
ulations is master and the other is slave. The master
hypothesis randomly select a hypothesis from the slave
population for the test. In this mode, there will be m
composite evaluation, where m is the size of the master
population.

e Sequential Master Synchronisation is a variant of mas-
ter/slave mode, where populations take turn to be master.
Each iteration has n composite evaluations, which is the
sum of all agents in both manifold and datum populations.

The diffusion phase in CSDS is similar to the standard SDS
for each population independently, where the information flow
is allowed within each population of agents and thus there
is no information exchange between the manifold and datum
population of agents [49].

It is empirically shown that DDSDS converges even when
there are 50% more outliers and it also outperforms standard
SDS in convergence time [50]. Both of these SDS variants
have been proposed to improve the performance of the original
SDS towards stable convergence in high noise estimation
tasks.

VI. APPLICATIONS

There are several applications associated with SDS which
have been successfully applied to diverse problems.

SDS was first introduced by a simple text searching algo-
rithm in 1989 [52] demonstrating the use of partial function
evaluation technique, by partially evaulating the text to find
the model or the best match.

Subsequently, in 1992, tracking eyes has been investigated
in [42]. In this project, a hybrid stochastic search network is
used to locate eye positions within grey scale images of human
faces. It was shown that the network can accurately locate the
eye features of all the subjects it has been trained with and it
could reach over sixty percent success in locating eye features
on subjects on which the system has not been explicitly trained
with.



In another project in 1995, similar to the ones above,
SDS is used in solving visual search tasks, such as object
recognition (in this case, locating facial features[53]). The
details of another visual related task for real time tracking of
lips in video films is given in [53], where SDS uses a hybrid
system of a set of n-tuple neurons [54].

Exploring a set of candidate positions to self-localise au-
tonomous wheelchair or robot in a complex busy environment
through a number of cells has been used in a method called
Focused Stochastic Diffusion Network [55] in 1998; in this
method, the space of possible positions is examined in parallel
by a set of competive cooperative cells to find out the most
likely position of the robot or wheelchair in the environment.

Later in 1999, emergent characteristics of neuron function-
ality has also been described using a new metaphor based
on SDS utilising spiking neurons [56] and also it was argued
that the metaphor of conventional computational description
of brain operation is too restrictive.

SDS was also used in wireless transformation networks,
where the location of transmission infrastructure is of signif-
icance to keep the cost minimum while preserving adequate
area coverage [38]. In this application at 2002, given a set
of candidate sites, a network should be designed so that at
certain number of reception points, the signal from at least
one transmitter can be received.

Sequence search application of SDS was tried in 2002, using
Constrained Stochastic Diffusion Search (CSDS) [57]. It is
an extension to best-fit string-maching SDS while allowing
the identification of best-fit sequences (usally referred to as
optimal alignment[58]), where there might be gaps between
contiguous sub-strings of a model in the search space. CSDS
is applied to the field of computational molecular biology (e.g.
identifying regions of DNA that would code for an amino-acid
sequence).

Another visual problem was attempted in 2005, using Group
Stochastic Search (GSS) [59] with the goal of locating and
tracking objects (e.g. head) in cluttered environment. In this
application, each agent utilises SDS, an n-tuple weightless
neural network [60] and a histogram intersection technique
to score its location [61]. Since the application works when
the speed is high, exhaustive and computationally expensive
searchs for the head are not useful. GSS is an extension for
video of SDS [62], which was introduced to located known
patterns in images but is not able to deal with the changing
search space of video.

In 2008 [63], SDS was used in feature tracking in the
context of Atmospheric Motion Vectors derivation, as using
template matching techniques, such as Euclidean distance or
cross-correlation for tracking steps is very expensive compu-
tationally.

In an ongoing work by the authors, the potential of merging
SDS with Particle Swarm Optimisation (PSO) [] is being
investigated, where SDS’s resource allocation is utilised.

A. Implementation on Hardware

SDS is inherently parallel in nature and the hardware
implementation of the algorithm is feasible. Still, the fact that

the original SDS model requires full inter-agent connectivity,
where each agent is able to communicate directly with all
others in the population, casues fundamental difficulty in the
efficient implementation of the algorithm on parallel computer
or dedicated hardware.

One of the solutions proposed in [43] was to limit the
communication between the agents. Agents are considered
spatially located in a lattice (Lattice SDS or LSDS) where
each agent is only connected to the k-nearest neighbours.

As a second solution, the agent swarm can be divided into
several sub-swarms. In this mode, each sub-swarm runs on a
separate processor and they are fully connected while allowing
just a low frequency of communication between swarms. This
process is applied to the diffusion phase, during which agents
communicate with each another.

Therefore, considering this form of SDS, agents just com-
municate with the ones they are connected to. It was shown
that a network with randomly connected agents (random
graph), with small number of long-range connections, per-
forms similar to standard SDS or ordered lattice with roughly
the same number of connections®. The following conclusion
has been drawn that restricting the number of interconnectivity
in random or small-world networks — which is a lattice with a
few additional number of long-range connections — does not
have huge effect on the performance of SDS algorithm. Also,
the rate of information spread is higher in random graphs and
small-world networks than ordered lattices.

Analysing the number of connections and the connection
topology leads to the following conclusion: it has been argued
that when a high-dimensional problem is considered, the
time at which one of the agents becomes active (time to
hit [52]), T}, is bigger than the time required for the active
agent to spread its successful hypothesis Ty [43]. Although
random graphs have shorter 7; than regular lattices, but they
are harder to implement on parallel hardware, because the
connection are not necessarily local or short. In small-world
lattice SDS topology, which shows the performance of a fully
interconnected standard SDS, adding random links decrease
T4 exponentially.

Therefore Ty is considered to be an important factor, which
not only affect the convergence time, but is also seen as a
parameter for resource allocation stability [64] as well as an
indirect measure for robustness [43].

VII. CONCLUSIONS

This paper gives a brief account of the research carried
out on stochastic diffusion search, a population-based, nature-
inspired probabilistic approach, which solves best-match prob-
lems mainly by communication between agents. An important
feature that makes SDS different from many other optimisation
techniques is the mathematical framework that proves its con-
vergence to optimal solution even in noisy search spaces. SDS
is proposed to investigate dynamically changing environments
and in contrast to many connectionist models that find the
solution by approaching a specific point in the weight space
which results in decreasing of their activity after convergence,

3Ibid



SDS is able to continue the exploration over the search space
further on after locating the optimum.

The adaptability of SDS comes from its convergence, which
ensures the diversity among its populations in the search space,
which in turn makes SDS suitable for dynamically changing
environments [32].

One of the on going researches on SDS is an attempt
to propose another way of describing possible emergence
of cognitive processing in a metaphor supported by SDS
algorithm, where neurons are considered as communication
devices rather than computational ones [65], [66].

On the computational side, in addition to continuous SDS
optimisation, its resource allocation is currently being investi-
gated in integration with other swarm intelligence algorithms.

[1]

[3]
[4

=

[5

=

[6]

[8

[t

[9

—

[10]
[11]
[12]

[13]
[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

S. Kirkpatric, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

F. Glover et al., “Tabu search-part i,” ORSA journal on Computing,
vol. 1, no. 3, pp. 190-206, 1989.

T. Back, Evolutionary Algorithms in Theory and Practice.
Oxford University Press, 1996.

J. H. Holland, “Adaptation in natural and artificial systems,” Ann Arbor,
MI, University of Michigan press, 1975.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1989.

M. Dorigo, “Optimization, learning and natural algorithms,” Milano:
Politecnico di Italy, PhD thesis, 1992.

M. Dorigo, V. Maniezzo, A. Colorni, M. Dorigo, V. Maniezzo, and
A. Colorni, “Positive feedback as a search strategy,” Dipartimento di
Elettronica e Informatica, Politecnico di, 1991.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
vol. IV. Piscataway, NJ: IEEE Service Center, 1995, pp. 1942-1948.
E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from
natural to artificial systems. Oxford University Press, USA, 1999.

J. G. Saxe, D. Lathen, and B. Chief, “The Blind Man and the Elephant,”
The Poems of John Godfrey Saxe, 1882.

J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence.
Francisco ; London: Morgan Kaufmann Publishers, 2001.

D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

W. Ashby, Design for a Brain. Chapman and Hall London, 1960.

E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimization
from social insect behaviour,” Nature, vol. 406, p. 3942, 2000.

B. Holldobler and E. O. Wilson, The Ants. Springer-Verlag, 1990.

L. J. Goodman and R. C. Fisher, The Behaviour and Physiology of Bees.
Oxon, UK: CAB International, 1991.

T. D. Seeley, The Wisdom of the Hive. Harvard University Press, 1995.
K. de Meyer, S. Nasuto, and J. Bishop, “Stochastic diffusion opti-
misation: the application of partial function evaluation and stochastic
recruitment in swarm intelligence optimisation,” Springer Verlag, vol.
2, Chapter 12 in Abraham, A. and Grosam, C. and Ramos, V. (eds),
"Swarm intelligence and data mining", 2006.

M. Moglich, U. Maschwitz, and B. Holldobler, “Tandem calling: A new
kind of signal in ant communication,” Science, vol. 186, no. 4168, pp.
1046-1047, 1974.

R. Chadab and C. Rettenmeyer, “Mass recruitment by army ants,”
Science, vol. 188, pp. 1124-1125, 1975.

N. MonmarchAS, G. Venturini, and M. Slimane, “On how pachycondyla
apicalis ants suggest a new search algorithm,” Future Generation Com-
puter Systems, vol. 16, no. 9, pp. 937-946, 2000.

M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137-172, 1999.
J. DENEUBOURG, J. PASTEELS, and J. VERHAEGHE, “Probabilistic
behaviour in ants: a strategy of errors?” Journal of theoretical biology,
vol. 105, no. 2, pp. 259-271, 1983.

H. Fan, Z. Hua, J. Li, and D. Yuan, “Solving a shortest path problem by
ant algorithm,” in Machine Learning and Cybernetics, 2004. Proceed-
ings of 2004 International Conference on, vol. 5, 2004, pp. 3174-3177
vol.5.

New York:

San

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(511

M. J. Krieger, J. B. Billeter, and L. Keller, “Ant-like task allocation
and recruitment in cooperative robots.” Nature, vol. 406, no. 6799, pp.
992-5, 2000.

M. Bishop, K. de Meyer, and S. Nasuto, “Recruiting robots perform
stochastic diffusion search,” SCRAP, 2002.

M. Mitchell, An introduction to genetic algorithms, 1996. MIT press.
D. E. Knuth, The art of computer programming. Vol. 3, Sorting and
Searching. Addison-Wesley Reading, MA, 1973.

J. Bishop, “Stochastic searching networks.” London, UK: Proc. 1st IEE
Conf. on Artificial Neural Networks, 1989, pp. 329-331.

K. de Meyer, J. M. Bishop, and S. J. Nasuto, “Stochastic diffusion:
Using recruitment for search,” Evolvability and interaction: evolutionary
substrates of communication, signalling, and perception in the dynamics
of social complexity (ed. P. McOwan, K. Dautenhahn & CL Nehaniv)
Technical Report, vol. 393, pp. 60-65, 2003.

S. J. Nasuto, “Resource allocation analysis of the stochastic diffusion
search,” Ph.D. dissertation, PhD Thesis, University of Reading, Reading,
UK, 1999.

S. J. Nasuto and J. M. Bishop, “Convergence analysis of stochastic
diffusion search,” Parallel Algorithms and Applications, vol. 14(2),
1999.

D. R. Myatt, J. M. Bishop, and S. J. Nasuto, “Minimum stable con-
vergence criteria for stochastic diffusion search,” Electronics Letters,
vol. 40, no. 2, pp. 112-113, 2004.

S. J. Nasuto, J. M. Bishop, and S. Lauria, “Time complexity of stochastic
diffusion search,” Neural Computation, vol. NC98, 1998.

K. de Meyer, “Foundations of stochastic diffusion search,” Ph.D. disser-
tation, PhD thesis, University of Reading, Reading, UK, 2003.

J. Digalakis and K. Margaritis, “An experimental study of benchmarking
functions for evolutionary algorithms,” International Journal, vol. 79,
pp. 403-416, 2002.

D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias, “Evaluating
evolutionary algorithms,” Artificial Intelligence, vol. 85, no. 1-2, pp.
245-276, 1996.

R. Whitaker and S. Hurley, “An agent based approach to site selection
for wireless networks,” in Ist IEE Conf. on Artificial Neural Networks.
Madrid Spain: ACM Press Proc ACM Symposium on Applied Comput-
ing, 2002.

Y. Jin, “A comprehensive survey of fittness approximation in evolution-
ary computation,” In: Soft Computing, vol. 9, pp. 3—12, 2005.

J. Branke, C. Schmidt, and H. Schmeck, “Efficient fitness estimation
in noisy environments,” In Spector, L., ed.: Genetic and Evolutionary
Computation Conference, Morgan Kaufmann, 2001.

M. A. el Beltagy and A. J. Keane, “Evolutionary optimization for
computationally expensive problems using gaussian processes,” in Proc.
Int. Conf. on Artificial Intelligence’0l. CSREA Press, 2001, pp. 708—
714.

J. Bishop and P. Torr, “The stochastic search network,” Neural Networks
for Images, Speech and Natural Language, pp. 370-387, 1992.

K. de Meyer, M. Bishop, and S. Nasuto, “Small world effects in lattice
stochastic diffusion search,” in Proc. ICANN 2002. Madrid, Spain:
Lecture Notes in Computer Science, 2415, 2002, pp. 147-152.

S. Christensen and F. Oppacher, “What can we learn from no free lunch?
a first attempt to characterize the concept of a searchable function,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2001, pp. 1219-1226.

S. J. Nasuto and M. J. Bishop, “Steady state resource allocation analysis
of the stochastic diffusion search,” ¢s.A/0202007, 2002.

K. de Meyer, “Explorations in stochastic diffusion search: Soft-
and hardware implementations of biologically inspired spiking neu-
ron stochastic diffusion networks,” University of Reading, Tech. Rep.
KDM/JMB/2000/1, 2000.

S. Nasuto and M. Bishop, “Stabilizing swarm intelligence search via
positive feedback resource allocation,” Nature Inspired Cooperative
Strategies for Optimization (Nicso 2007), 2008.

D. Myatt, S. Nasuto, and J. Bishop, “Alternative recruitment strategies
for stochastic diffusion search,” Artificial Life X, Bloomington USA,
2006.

J. Bishop, “Coupled stochastic diffusion processes,” Proc. SCARP,
Reading, UK, pp. 185-187, 2003.

D. Myatt and J. Bishop, “Data driven stochastic diffusion networks for
robust high-dimensionality manifold estimation - more fun than you can
shake a hyperplane at,” Proc. SCARP, Reading, UK, 2003.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395,
1981.



[52]
[53]
[54]

[55]

[56]

[57]
[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

J. Bishop, “Anarchic techniques for pattern classification,” Ph.D. disser-
tation, PhD Thesis, University of Reading, Reading, UK, 1989.

E. Grech-Cini, “Locating facial features,” Ph.D. dissertation, PhD The-
sis, University of Reading, Reading, UK, 1995.

I. Aleksander and T. Stonham, “Computers and digital techniques 2(1),”
Lect. Notes Art. Int 1562, pp. 29-40, 1979.

P. Beattie and J. Bishop, “Self-localisation in the senario autonomous
wheelchair,” Journal of Intellingent and Robotic Systems, vol. 22, pp.
255-267, 1998.

S. J. Nasuto, K. Dautenhahn, and J. Bishop, “Communication as an
emergent methaphor for neuronal operation,” Lect. Notes Art. Int 1562,
pp. 365-380, 1999.

D. Jones, “Constrained stochastic diffusion search.”

M. Tompa, “Lecture notes on biological sequence analysis,” Dept. of
Comp. Sci. and Eng., University of Washington, Seattle, Technical report,
2000.

M. Evans and J. Ferryman, “Group stochastic search for object detection
and tracking.”

M. Morciniec and R. Rohwer, “The n-tuple classifier: Too good to
ignore,” Tech. Rep. Technical Report NCRG/95/013, 1995.

S. Birchfield, “Elliptical head tracking using intensity gradients and color
histograms,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Citeseer, 1998, pp. 232-237.

R. Summers, “Stochastic diffusion search: A basis for a model of visual
attention?”” 1998.

A. Hernandez-Carrascal and S. Nasuto, “A SWARM INTELLIGENCE
METHOD FOR FEATURE TRACKING IN AMV DERIVATION,”
Ninth International Wind Workshop, 2008.

K. de Meyer, “Explorations in stochastic diffusion search: Soft-and hard-
ware implementations of biologically inspired spiking neuron stochastic
diffusion networks,” Technical Report KDM/JMB/2000, Tech. Rep.,
2000.

S. Nasuto, J. Bishop, and K. de Meyer, “Communicating neurons:
A connectionist spiking neuron implementation of stochastic diffusion
search,” Neurocomputing, vol. 72, no. 4-6, pp. 704-712, 2009.

M. Bishop, “A Cognitive Computation Fallacy? Cognition, Computa-
tions and Panpsychism,” Cognitive Computation, vol. 1, no. 3, pp. 221-
233, 2009.

CONTENTS
| Introduction

II Swarm Intelligence

II-A Communication in Social Insects

1I-B Methods of Communication . . . . ..

II-C Search and Optimisation . .. ... ..
III  Stochastic Diffusion Search

II-A  The Mining Game . . . . ... ... ..

III-B Refinements in the Metaphor . . . . . .
IV~ SDS Architecture

IV-A A Search Example . .. ........

IV-B Initialisation and Termination . . . . . .

IvV-C Partial Function Evaluation . . .. ..

Dynamic Environments . . . . . .. ..
IV-D Convergence . . . . ... ... .....
IV-E Resource Allocation and Stability

Local Exploitation and Global Explo-
ration

\'% Variations in SDS

V-A Recruitment Strategies . ... ... ..
Passive Recruitment Mode . . ... ..
Active Recruitment Mode . . . . . . ..
Dual Recruitment Mode . . . . . .. ..
Context Sensitive Mechanism . . . . . .
Context Free Mechanism . . . ... ..
V-B Synchronous and Asynchronous Update
V-C Composite Hypotheses . . . . ... ..
Data Driven SDS . . . ... ... ...
Coupled SDS . . ... ... ... ...
VI  Applications
VI-A  Implementation on Hardware . . . . . .
VII  Conclusions

References

NN = =

W W W

o) W) S e R |

-

O O O 0 00 0000 I



